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1 Lévy @72

MERBE L, KRB E L BITT7 VX AT 2BREBHANCHAETL2HDTHS. Zh
B IR M OMERE R L TERINS. FlZIX, AARHERBIEICBrown &8 (X 1)
X Poisson B (X1 2) 235 5. ZNEUITHEWR FOILEEHES, tEOR AN R o e T
NELTIESHWSEATWS,
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1 Brown JEH) 2 Poisson i
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Definition 1.1. fERZEM (Q,.7,P) L TERSINIHERBE X = (X,)i>0 ¥ Lévy BETH S &
&, IO EZ#M- 5 2

1. X O RAKIE P-as. 1< cadlag (Fdke, EMR%E 3 D).
2. P(Xg=0)=1.
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3.0<s<tiTHLT, Xy — X, 13 X4y LRI
4. 0<s<tIIMLT, Xy — X & (Xy)u<s &L

Fe 123 7= Brown & B Poisson MEZ D THEIZER(LT A3 RD X STk 3.
Definition 1.2. i@ B = (By);>0 »° Brown #EITH % ¥ 1, L FOMEZM-T 2 &

1. Bl Lévy BfETH 3.
2. %t >0 LUT, B XIESSE N0, ) IZHES.

Definition 1.3. MEHEIE N = (N;)¢>o 23 Poisson @R TH 2 &%, UTFOMWHEZI T Z &:

1. N 1% Lévy @f2C5 3.
2. %t > 0L T, Ny i& Poisson 731 Poi(t) IZHES.

HEREB X RO 2502 LT, FEB o 2 XIZN2 D0 H 5!
Dy()) = E[e“} (A €R).

R, X © Fourier ZHICHYS T2 D TH 5. Lévy B (X)) >0 DIHE, H 5 BB U D1FLE

L,
E[eim] — et (>0, AeR)

ETE5. ZOBBY % Lévy #f2 (X)i>0 OFFERER E X, Kithfe%id Lévy @R OHIFEIC B
THELREZRS

2 FHEIFE

SHEMEE L, TFEDEE TRV L WVSREDO N TIOMRERD S S VAL 52
TOEEZLHMETH D, BEIIIROMREEZ 2 il o TERMLENS:

lim P,(A| Ta >7) (A €.Z).
T—>00

72720, (Xe)i>0, (F)i>0, (Pr)aer) & z € R 226 i3S 2 Markov #8582, (F)i>0 (& (Xi)i>0 225
AR X N B A7 natural filtration, Ty 1Z8EE A XS 2 FERA), 713 clock ¥ XIZN 2 58K
NEFRZIN N FazS

o (EBIFET (C)) 7=t ast — oo,
BN (Ex)) 7 = (eq) as ¢ — 0+, 72721, e, ~ Exp(q) 1 (Xy)i>0 &AL,
—REBERZIRGET (OH)) 7 = (Tp,) as b — too, 2L, Tb VAR DTS 2 BRI,

TREFLERZIRGT (TH)) 7 = (T. AT_q) as ¢,d — 00, 4= — v € [-1,1],

’ c+d

BENDB. FHTZoMEE, £5 A ZEE T 3RMAMGEED L < I3&ESE A° ISHFEY S EHIREE
LR ZOMEDATHIFEIIUA T TH %!




i S fife R ZAF Clock
avoid (—oo,a)
Knight [8] Brown & avoid (a, o) (®)
stay [a, —al]
Chaumont [2 Lévy i&f& stay (0, 0) ©)
Choumont-Doney [3] (Ex)
Pant{ [9] Lévy i##2 avoid {0} (Ex)
Doring et al. [4] Lévy itafs avoid [a, b] (Ex)
Takeda-Yano [13] (Ex)
Lévy itaf2 avoid {0} (OH)
Takeda [12]
(TH)
(Bx)
avoid {a,...,an} (OH)
EEK 5] Lévy it (TH)
avoid HHt F,-8£5 (Ex)
avoid LZ

K1 Lévy BRI T 5 SRR DA THIZE

3 M=

WERIE L 1%, [(RFIEOEIRT) FEOEAIATESEL L1 5 &0 FTLOMKEBRD
3BEVHYSLENT 2 HEEZBMETH D, MEIZROMREE L5 & 21k o TERILX

N5:
iy PP T
o0 P,[T,]
72U, Pyl EHIE P, 12BE S 2 HARHE, 0.7, 13 Z,- Al A FRILBIBRIK, (T')i>0 & weight & X
I 2 IEEERE, B2,

(s >0, Fs € b.75).

o (RFRRMTIRIE (LP)) T, = £(LY), 72721, f € L1, (L9)s=0 1& 0 TO R,
o (Kac IMLEIRIE (KP)) Ty = exp{— [, L¥q(dx)}, 7272 L, q(dz) (&84 =R,

REHD S, JRITIEE L L EEEICRA % T RIS ¢ CHE LRSI R R T & 5 R
FBETDH 5. (RIHOME MR ZIE 1] 2R E). 2075, (LP) & 0 1/FE550 &
WS EFOUTIRBE L B2 N5, BHE, (1) = Loy (2) T 23HE, S 0 BT 2 &0
RIRIC 72 2 720, LS RIRE S F NI OIRER Y 5 2 51 5. C OMEDSATHZEIZL FCH 3



ffE=R AR i S Weight Clock
Brown 1T Roynette et al. [10] (LP) ©)
Roynette et al. [11] (KP)
e A Yano et al. [14] (LP),(KP) (0)
Takeda-Yano [13] (LP) (Ex)
Lévy itz Iba-Yano [7] e~ (ML HALY?) (OH)
FHR (0] e~ bttt L) | (TH)

& 2 Lévy BRI 3 2 AT D S ThHE

4 FHER

(X0),P.) & 2 € R 55 55 3 BRI 1 XOE Lévy 3B Y L, 2 ORHHEE U()) 13,

[l o0

il TeRET 3. 2O E, LLNOFEREG:
Theorem 4.1 ([5]). a1,...,a, EREFTS. ZDOL X, D28 pa, () BFILELT,

X
lim P, (A’ TA > 7') P, [1A . Wl{TAn>s}:| (A € ys)

T—00

TR, ZEB0IRsVwre R2EZS. 2L, (Bx) 73563 v, =0, (OH) 2513 v, = +1,
(TH) %2513 v, =~

Theorem 4.2 ([5]). A 02 EOERF,-HRELT5. ZOt %, DB oa(z) PEFELT,

0a(Xs)
lim Py(A| T P, |1, - 1 A€ F).
Jim P (A Ta > eg) = [A oa®) {TA>s}] (A e 7)

RL, 7EBR 0B e RZEZEZD.

Theorem 4.3 ([6]). a1,...,an €R, A,y > 02T 3. 2O E, B3 ) (x) HFLE
LT,

MO = rm) (X )P = ) (X exp< ZA,@M)

¥ martingale (272D ,

. (n) (vr.m)
lim M(F;] —P, |F, - % (F, € bF).
T P [FT” ] MO’Yr,n

77U, (Bx) %5E 7, =0, (OH) % 51E v, = +1, (TH) %513 7, = 1.
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